ATUL VIDYALAYA
 FIRST PRELIMINARY EXAMINATION-2012-13
 MATHEMATICS

STD:XII Science
MM: 100
DATE: 01/10/2012
SESSION:I
TIME: 3 hrs

GENERAL INSTRUCTION

(Three hours)
(Candidate are allowed additional 15 minutes for only reading the paper .
They must NOT start writing during this time)
There will be one paper of three hours duration of 100 marks. The syllabus is divided into three sections A, B and C. Section A is compulsory for all candidates. Candidates will have choice of attempting questions from either from Section B or Section C.

Section A(80 marks) will consists of 9 questions. Candidate will be required to answer Question -1 (Compulsory) and five out of the rest of the eight question.

Section B/C(20 marks) Candidate will be required to answer two questions out of three from either Section B or Section C.

Section-A

Question 1.

ii) Prove that: $\tan ^{-1} \frac{2}{3}=\frac{1}{2} \tan ^{-1} \frac{12}{5}$
[3]
iii) Solve the differential equation $x^{2}(y+1) d x+y^{2}(x-1) d y=0$
[3]
iv) For matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the number K_{1} and K_{2} such that $A^{2}+K_{1} A+K_{2} I=0$. Hence, find A^{-1}.
v) Find the modulus and argument of the complex number $\frac{5-i}{2-3 i}$.
vi) Evaluate : $\lim _{x \rightarrow 0} \frac{3 \sin 2 x-2 \sin 3 x}{x^{3}}$
[3]
vii) Two dice are rolled once. Find the probability that the numbers on the two dice are different. What is the probability that the total is at least 4 ?
iix) If p and q be the imaginary cube roots of unity, prove that $p^{2}+q^{2}-p q=-2$.
ix) Show that the straight line $5 x+12 y=9$ touches the hyperbola $x^{2}-9 y^{2}=9$ and find the point of contact .
x) Differentiate $\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$ with respect to x.
[3]

Question 2.

i) If x, y, z are all different and $\left|\begin{array}{lll}x & x^{2} & 1+x^{3} \\ y & y^{2} & 1+y^{3} \\ z & z^{2} & 1+z^{3}\end{array}\right|=0$, show that $x y z=-1$.
[5]
ii) Using matrices, solve the following homogeneous equations:

$$
\begin{array}{ll}
& 3 x+2 y+7 z=0 \\
\text { EMBED Equation.DSMT4 } & 4 x-3 y-2 z=0 \\
5 x+9 y+23 z=0
\end{array}
$$

Question 3.

i) If $y=\sqrt{\frac{1-x}{1+x}}$, prove that $\left(1-x^{2}\right) \frac{d y}{d x}+y=0$.

Shaping the future
MATHEMATICS

Atul Vidyalaya
Pg. 1
STD. XII SCI.
ii) Show that $\frac{1}{2} \tan ^{-1} x=\cos ^{-1} \sqrt{\left\{\frac{1+\sqrt{1+x^{2}}}{2 \sqrt{1+x^{2}}}\right\}}$.

Question 4

i) Evaluate the following: $\int x \tan ^{-1} x d x$
ii) x, y and z represent three switches in an " ON " position and $x^{\prime}, y^{\prime}, z^{\prime}$ represent the three switches in an " OFF " position.
Construct a switching circuit representing the polynomial $\left(x^{\prime}+y^{\prime}\right)\left(x+z^{\prime}\right)+y^{\prime}(y+z)$.
Using the laws of Boolean algebra, show that the above polynomial is equivalent
to $x^{\prime} z^{\prime}+y^{\prime}$ and construct an equivalent switching circuit .

Question 5.

i) Find the area A bounded by the x - axis, part of the curve $y=1-\frac{8}{x^{2}}$ and the ordinate $x=4$ and $x=8$. If the straight line passing through the point (a, k) and parallel to the y-axis divides the area A into two parts in the ratio $4: 5$, Find the value of a.
ii) Using De Moivres theorem, find the least value of n for which the expression $\left(\frac{1+i}{1-i}\right)^{n}$ is purely imaginary .

Question 6.

i) Show that the semi -vertical angle of the cone of maximum volume and of given slant height is $\tan ^{-1} \sqrt{2}$.
ii) It is given that for the function $f(x)=x^{3}-6 x^{2}+a x+b$ on [1, 3], Rolle's theorem holds with $C=2+\frac{1}{\sqrt{3}}$. Find the values of a and $b_{\text {if }} f(x)=f(3)=0$.

Question 7.

i) The mathematical aptitude scores of 10 Software Computer programmers with their job performance are given below :

Programmers	A	B	C	D	E	F	G	H	I	J
Mathematics Scores	5	1	4	3	0	2	6	8	9	7
Job performance rating	8	16	8	9	5	4	3	8	17	12

Calculate Spearman's rank correlation coefficient .
ii) In a bivariate distribution, it was found $\sigma_{x}=3$, the regression line of Y on X is
$8 x-10 y+66=0$ while regression line of X on Y is $40 x-18 y-214=0$. Calculate
$\bar{x}, \bar{y}, \rho(X, Y), \operatorname{Cov} .(X, Y)$ and σ_{y}.

Question 8.

i) Two unbiased dice are thrown.Find the probability that:
(a) Neither a doublet nor a total of 8 will appear ;
(b) The sum of the numbers obtained on the two dice is neither a multiple of 2 Nor a multiple of 3 .
ii) A problem in Mathematics is given to 3 students whose chances of solving it are

Atul Vidyalaya
STD. XII SCI
Pg. 2
$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$
What is the probability that the problem is solved?

Question 9

i) If $y=A \cos n x+B \sin n x$, prove that $\frac{d^{2} y}{d x^{2}}+n^{2} y=0$.
ii) Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$
[5]

(Answer two questions from either Section B or Section C) SECTION B

Question 10.

i) Find the equations of the planes through the intersection of the planes $x+3 y+6=0$ and $3 x-y-4 z=0$ whose perpendicular distance from the origin is equal to 1 .
ii) Show that the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ intersect. Find their Point of intersection

Question 11.

i) Prove by vector method that the perpendicular bisector of the sides of triangle are Concurrent.
ii) Find the area of a parallelogram whose diagonals are determined by the vectors

$$
\begin{equation*}
\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} \text { and } \vec{b}=\hat{i}-3 \hat{j}+4 \hat{k} \tag{5}
\end{equation*}
$$

Question 12.

i) A random variable x has the following probability distribution :

\mathbf{x}	0	1	2	3	4	5	6	7
$\mathbf{P}(\mathbf{x})$	a	4 a	3 a	7 a	8 a	10 a	6 a	9 a

a) Determine the value of a.
b) Find $P(x<3), P(x \leq 4), P(0<x<5)$.
c) Give the smallest value of m for which $P(x \leq m) \geq 0.6$.
ii) Bag I contains 2 white and 3 red balls and bag II contains 4 white and 5 red balls .

A bag is taken at random and a ball is drawn from it. If the ball drawn is red, find the probability that it was drawn from bag I.

Question 13.

i) A bill of $\sqrt{1,000}$ drawn on May 7,2003 for 6 months was discounted on August 29,2003 for cash payment of `988 . Find the rate of interest charged by the bank. ii) A man purchases a house and take a mortgage on it for` 8, 00, 000 to be paid off in 12 years by equal annual payments. If the interest rate is 9% per annum compounded annually, what amount will be required to pay each year ?

Question 14.

i) A company has produced x items and the total cost C and total revenue R are given by the equation $C=100+0.015 x^{2}$ and $R=3 x$. Find how many items should be produced to maximize the profit. What is the profit?

Atul Vidyalaya
STD. XII SCI.

Pg. 3
ii) A shopkeeper deals in two items - wall hangings and artificial plants. He has 15000 to invest and a space to store at most 80 pieces. A wall hanging costs him `300 and an artificial plant` 150 . He can sell a wall hanging at a profit of ` 50 and an artificial plant at a profit of 18 . Assuming that he can sell all the items that he buys, formulate a linear programming problem in order to maximize his profit . [5]

Question 15.

i) Using 1985 as base year, the index numbers for the price of a commodity in 1986 and 1987 are 118 and 125 . Calculate the index numbers for (i) 1985 and (ii) 1987 if 1986 is taken as the base year.
ii) Daily absence from a school during 3 weeks is recorded as follows :

	Monday	Tuessday	Wednesday	Thursday	Friday
Week 1	23	28	21	33	40
Week 2	38	52	43	58	63
Week 3	52	54	61	51	51

Draw the graph of these figures. Calculate 5 - day moving averages and plot them on the same graph.

